Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.460
Filtrar
1.
J Mol Biol ; 436(5): 168407, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109993

RESUMO

Light is required for photosynthesis, but plants are often exposed to excess light, which can lead to photodamage and eventually cell death. To prevent this, they evolved photoprotective feedback mechanisms that regulate photosynthesis and trigger processes that dissipate light energy as heat, called non-photochemical quenching (NPQ). In excess light conditions, the light reaction and activity of Photosystem II (PSII) generates acidification of the thylakoid lumen, which is sensed by special pH-sensitive proteins called Photosystem II Subunit S (PsbS), actuating a photoprotective "switch" in the light-harvesting antenna. Despite its central role in regulating photosynthetic energy conversion, the molecular mechanism of PsbS as well as its interaction with partner proteins are not well understood. This review summarizes the current knowledge on the molecular structure and mechanistic aspects of the light-stress sensor PsbS and addresses open questions and challenges in the field regarding a full understanding of its functional mechanism and role in NPQ.


Assuntos
Complexos de Proteínas Captadores de Luz , Fotossíntese , Complexo de Proteína do Fotossistema II , Plantas , Luz , Complexos de Proteínas Captadores de Luz/química , Complexo de Proteína do Fotossistema II/química , Plantas/enzimologia , Conformação Proteica
2.
Nature ; 624(7990): 182-191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938780

RESUMO

Plants synthesize numerous alkaloids that mimic animal neurotransmitters1. The diversity of alkaloid structures is achieved through the generation and tailoring of unique carbon scaffolds2,3, yet many neuroactive alkaloids belong to a scaffold class for which no biosynthetic route or enzyme catalyst is known. By studying highly coordinated, tissue-specific gene expression in plants that produce neuroactive Lycopodium alkaloids4, we identified an unexpected enzyme class for alkaloid biosynthesis: neofunctionalized α-carbonic anhydrases (CAHs). We show that three CAH-like (CAL) proteins are required in the biosynthetic route to a key precursor of the Lycopodium alkaloids by catalysing a stereospecific Mannich-like condensation and subsequent bicyclic scaffold generation. Also, we describe a series of scaffold tailoring steps that generate the optimized acetylcholinesterase inhibition activity of huperzine A5. Our findings suggest a broader involvement of CAH-like enzymes in specialized metabolism and demonstrate how successive scaffold tailoring can drive potency against a neurological protein target.


Assuntos
Alcaloides , Anidrases Carbônicas , Modelos Neurológicos , Plantas , Animais , Acetilcolinesterase/metabolismo , Alcaloides/biossíntese , Alcaloides/síntese química , Alcaloides/metabolismo , Alcaloides/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Regulação da Expressão Gênica de Plantas , Neurotransmissores/metabolismo , Plantas/enzimologia , Plantas/genética , Plantas/metabolismo , Sesquiterpenos/síntese química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Lycopodium/química , Lycopodium/metabolismo
3.
Structure ; 31(7): 757-759, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37419098

RESUMO

The sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is a near-universal component of sulfur metabolism. In a report by Zhang et al. in this issue of Structure, X-ray crystal structures of the APS kinase domains from human PAPS synthase reveal dynamic substrate recognition and a regulatory "redox switch" analogous to that previously described only in plant APS kinases.


Assuntos
Adenosina , Fosfotransferases (Aceptor do Grupo Álcool) , Plantas , Humanos , Adenosina/metabolismo , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plantas/enzimologia
4.
Molecules ; 28(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903403

RESUMO

Polyphenol oxidase (PPO) is present in most higher plants, but also in animals and fungi. PPO in plants had been summarized several years ago. However, recent advances in studies of PPO in plants are lacking. This review concludes new researches on PPO distribution, structure, molecular weights, optimal temperature, pH, and substrates. And, the transformation of PPO from latent to active state was also discussed. This state shift is a vital reason for elevating PPO activity, but the activation mechanism in plants has not been elucidated. PPO has an important role in plant stress resistance and physiological metabolism. However, the enzymatic browning reaction induced by PPO is a major problem in the production, processing, and storage of fruits and vegetables. Meanwhile, we summarized various new methods that had been invented to decrease enzymatic browning by inhibiting PPO activity. In addition, our manuscript included information on several important biological functions and the transcriptional regulation of PPO in plants. Furthermore, we also prospect some future research areas of PPO and hope they will be useful for future research in plants.


Assuntos
Catecol Oxidase , Plantas , Catecol Oxidase/química , Plantas/enzimologia , Polifenóis , Verduras
6.
J Biol Chem ; 298(12): 102626, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273586

RESUMO

The riboflavin derivatives FMN and flavin adenine dinucleotide (FAD) are critical cofactors for wide-ranging biological processes across all kingdoms of life. Although it is well established that these flavins can be readily interconverted, in plants, the responsible catalysts and regulatory mechanisms remain poorly understood. Here, we report the cloning and biochemical characterization of an FAD synthetase encoded by the gene At5g03430, which we have designated AtFADS1 (A. thaliana FADS1). The catalytic properties of the FAD synthetase activity are similar to those reported for other FAD synthetases, except that we observed maximum activity with Zn2+ as the associated divalent metal cation. Like human FAD synthetase, AtFADS1 exists as an apparent fusion with an ancestral FAD pyrophosphatase, a feature that is conserved across plants. However, we detected no pyrophosphatase activity with AtFADS1, consistent with an observed loss of a key catalytic residue in higher plant evolutionary history. In contrast, we determined that algal FADS1 retains both FAD synthetase and pyrophosphatase activity. We discuss the implications, including the potential for yet-unstudied biologically relevant noncatalytic functions, and possible evolutionary pressures that have led to the loss of FAD pyrophosphatase activity, yet universal retention of an apparently nonfunctional domain in FADS of land plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flavina-Adenina Dinucleotídeo , Arabidopsis/enzimologia , Arabidopsis/genética , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Plantas/enzimologia , Plantas/genética , Riboflavina , Proteínas de Arabidopsis/química
7.
J Biol Chem ; 298(11): 102541, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174673

RESUMO

Chloroplast FoF1-ATP synthase (CFoCF1) uses an electrochemical gradient of protons across the thylakoid membrane (ΔµH+) as an energy source in the ATP synthesis reaction. CFoCF1 activity is regulated by the redox state of a Cys pair on its central axis, that is, the γ subunit (CF1-γ). When the ΔµH+ is formed by the photosynthetic electron transfer chain under light conditions, CF1-γ is reduced by thioredoxin (Trx), and the entire CFoCF1 enzyme is activated. The redox regulation of CFoCF1 is a key mechanism underlying the control of ATP synthesis under light conditions. In contrast, the oxidative deactivation process involving CFoCF1 has not been clarified. In the present study, we analyzed the oxidation of CF1-γ by two physiological oxidants in the chloroplast, namely the proteins Trx-like 2 and atypical Cys-His-rich Trx. Using the thylakoid membrane containing the reduced form of CFoCF1, we were able to assess the CF1-γ oxidation ability of these Trx-like proteins. Our kinetic analysis indicated that these proteins oxidized CF1-γ with a higher efficiency than that achieved by a chemical oxidant and typical chloroplast Trxs. Additionally, the CF1-γ oxidation rate due to Trx-like proteins and the affinity between them were changed markedly when ΔµH+ formation across the thylakoid membrane was manipulated artificially. Collectively, these results indicate that the formation status of the ΔµH+ controls the redox regulation of CFoCF1 to prevent energetic disadvantages in plants.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons , Prótons , Tiorredoxinas , Trifosfato de Adenosina/metabolismo , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Cinética , Oxirredução , Tiorredoxinas/metabolismo , Tilacoides/enzimologia , Plantas/enzimologia
8.
Essays Biochem ; 66(2): 135-145, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35635104

RESUMO

The proteasome plays vital roles in eukaryotic cells by orchestrating the regulated degradation of large repertoires of substrates involved in numerous biological processes. Proteasome dysfunction is associated with a wide variety of human pathologies and in plants severely affects growth, development and responses to stress. The activity of E3 ubiquitin ligases marks proteins fated for degradation with chains of the post-translational modifier, ubiquitin. Proteasomal processing of ubiquitinated substrates involves ubiquitin chain recognition, deubiquitination, ATP-mediated unfolding and translocation, and proteolytic digestion. This complex series of steps is made possible not only by the many specialised subunits of the 1.5 MDa proteasome complex but also by a range of accessory proteins that are recruited to the proteasome. A surprising class of accessory proteins are members of the HECT-type family of ubiquitin ligases that utilise a unique mechanism for post-translational attachment of ubiquitin to their substrates. So why do proteasomes that already contain all the necessary machinery to recognise ubiquitinated substrates, harbour HECT ligase activity? It is now clear that some ubiquitin ligases physically relay their substrates to proteasome-associated HECT ligases, which prevent substrate stalling at the proteasome. Moreover, HECT ligases ubiquitinate proteasome subunits, thereby modifying the proteasome's ability to recognise substrates. They may therefore enable proteasomes to be both non-specific and extraordinarily selective in a complex substrate environment. Understanding the relationship between the proteasome and accessory HECT ligases will reveal how the proteasome controls so many diverse plant developmental and stress responses.


Assuntos
Plantas , Complexo de Endopeptidases do Proteassoma , Ubiquitina , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Free Radic Biol Med ; 182: 192-205, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35247570

RESUMO

Plant growth under abiotic stress conditions significantly enhances intracellular generation of reactive oxygen species (ROS). Oxidative status of plant cells is directly affected by the modulation of iron homeostasis. Among mammals and plants, heme oxygenase-1 (HO-1) is a well-known antioxidant enzyme. It catalyzes oxygenation of heme, thereby producing Fe2+, CO and biliverdin as byproducts. The antioxidant potential of HO-1 is primarily due to its catalytic reaction byproducts. Biliverdin and bilirubin possess conjugated π-electrons which escalate the ability of these biomolecules to scavenge free radicals. CO also enhances the ROS scavenging ability of plants cells by upregulating catalase and peroxidase activity. Enhanced expression of HO-1 in plants under oxidative stress accompanies sequestration of iron in specialized iron storage proteins localized in plastids and mitochondria, namely ferritin for Fe3+ storage and frataxin for storage of Fe-S clusters, respectively. Nitric oxide (NO) crosstalks with HO-1 at multiple levels, more so in plants under oxidative stress, in order to maintain intracellular iron status. Formation of dinitrosyl-iron complexes (DNICs) significantly prevents Fenton reaction during oxidative stress. DNICs also release NO upon dissociation in target cells over long distance in plants. They also function as antioxidants against superoxide anions and lipidic free radicals. A number of NO-modulated transcription factors also facilitate iron homeostasis in plant cells. Plants facing oxidative stress exhibit modulation of lateral root formation by HO-1 through NO and auxin-dependent pathways. The present review provides an in-depth analysis of the structure-function relationship of HO-1 in plants and mammals, correlating them with their adaptive mechanisms of survival under stress.


Assuntos
Heme Oxigenase (Desciclizante) , Ferro , Óxido Nítrico , Plantas/enzimologia , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Homeostase , Ferro/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo
10.
J Plant Physiol ; 271: 153653, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35255243

RESUMO

Autophagy is a conserved system from yeast to mammals that mediates the degradation and renovation of cellular components. This process is mainly driven by numerous autophagy-related (ATG) proteins. Among these components, the ATG1/ATG13 complex plays an essential role in initiating autophagy, sensing nutritional status signals, recruiting downstream ATG proteins to the autophagosome formation site, and governing autophagosome formation. In this review, we will focus on the ATG1/ATG13 kinase complex, summarizing and discussing the current views on the composition, structure, function, and regulation of this complex in plants.


Assuntos
Autofagia , Proteínas Serina-Treonina Quinases , Animais , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia , Plantas/enzimologia , Fatores de Transcrição
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163576

RESUMO

Plant xyloglucan:xyloglucosyl transferases, known as xyloglucan endo-transglycosylases (XETs) are the key players that underlie plant cell wall dynamics and mechanics. These fundamental roles are central for the assembly and modifications of cell walls during embryogenesis, vegetative and reproductive growth, and adaptations to living environments under biotic and abiotic (environmental) stresses. XET enzymes (EC 2.4.1.207) have the ß-sandwich architecture and the ß-jelly-roll topology, and are classified in the glycoside hydrolase family 16 based on their evolutionary history. XET enzymes catalyse transglycosylation reactions with xyloglucan (XG)-derived and other than XG-derived donors and acceptors, and this poly-specificity originates from the structural plasticity and evolutionary diversification that has evolved through expansion and duplication. In phyletic groups, XETs form the gene families that are differentially expressed in organs and tissues in time- and space-dependent manners, and in response to environmental conditions. Here, we examine higher plant XET enzymes and dissect how their exclusively carbohydrate-linked transglycosylation catalytic function inter-connects complex plant cell wall components. Further, we discuss progress in technologies that advance the knowledge of plant cell walls and how this knowledge defines the roles of XETs. We construe that the broad specificity of the plant XETs underscores their roles in continuous cell wall restructuring and re-modelling.


Assuntos
Parede Celular/enzimologia , Glucanos/metabolismo , Glicosiltransferases/metabolismo , Células Vegetais/enzimologia , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Xilanos/metabolismo , Membrana Celular/enzimologia , Membrana Celular/genética , Parede Celular/genética , Glucanos/genética , Glicosilação , Glicosiltransferases/genética , Proteínas de Plantas/genética , Plantas/genética , Especificidade por Substrato , Xilanos/genética
12.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 113-123, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981767

RESUMO

Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial in order to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryoEM) has revolutionized structural biology, its applicability to high-resolution structural analysis of comparatively small enzymes has so far been largely unexplored. Here, it is shown that cryoEM can reveal the structures of plant borneol dehydrogenases of ∼120 kDa at or below 2 Šresolution, paving the way for the rapid development of new biocatalysts that can provide access to bioactive terpenes and terpenoids.


Assuntos
Catálise , Microscopia Crioeletrônica/métodos , Enzimas/química , Plantas/enzimologia , Oxirredutases do Álcool/química , Modelos Moleculares , Estrutura Molecular , Engenharia de Proteínas/métodos , Salvia/química , Salvia/genética , Salvia officinalis/química , Salvia officinalis/genética , Terpenos/química
13.
Gene ; 816: 146169, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35026291

RESUMO

Aldo-keto reductase-domain (PF00248) containing proteins (AKRs) are NAD(P)(H)-dependent oxidoreductases of a multigene superfamily that mediate versatile functions in plants ranging from detoxification, metal chelation, potassium ion efflux to specialized metabolism. To uncover the complete repertoire of AKR gene superfamily in plants, a systematic kingdom-wide identification, phylogeny reconstruction, classification and synteny network clustering analyses were performed in this study using 74 diverse plant genomes. Plant AKRs were omnipresent, legitimately classified into 4 groups (based on phylogeny) and 14 subgroups (based on the ≥ 60% of protein sequence identity). Species composition of AKR subgroups highlights their distinct emergence during plant evolution. Loss of AKR subgroups among plants was apparent and that various lineage-, order/family- and species-specific losses were observed. The subgroups IA, IVB and IVF were flourished and diversified well during plant evolution, likely related to the complexity of plant's specialized metabolism and environmental adaptation. About 65% of AKRs were in genomic synteny regions across the plant kingdom and the AKRs relevant to important functions (e.g. vitamin B6 metabolism) were in profoundly conserved angiosperm-wide synteny communities. This study underscores the evolutionary landscape of plant AKRs and provides a comprehensive resource to facilitate the functional characterization of them.


Assuntos
Aldo-Ceto Redutases/genética , Evolução Molecular , Genes de Plantas , Plantas/enzimologia , Sintenia , Aldo-Ceto Redutases/classificação , Filogenia , Plantas/genética
14.
Plant Mol Biol ; 108(4-5): 307-323, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35006475

RESUMO

KEY MESSAGE: This review outlines research performed in the last two decades on the structural, kinetic, regulatory and evolutionary aspects of ADP-glucose pyrophosphorylase, the regulatory enzyme for starch biosynthesis. ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the pathway of glycogen and starch synthesis in bacteria and plants, respectively. Plant ADP-Glc PPase is a heterotetramer allosterically regulated by metabolites and post-translational modifications. In this review, we focus on the three-dimensional structure of the plant enzyme, the amino acids that bind the regulatory molecules, and the regions involved in transmitting the allosteric signal to the catalytic site. We provide a model for the evolution of the small and large subunits, which produce heterotetramers with distinct catalytic and regulatory properties. Additionally, we review the various post-translational modifications observed in ADP-Glc PPases from different species and tissues. Finally, we discuss the subcellular localization of the enzyme found in grain endosperm from grasses, such as maize and rice. Overall, this work brings together research performed in the last two decades to better understand the multiple mechanisms involved in the regulation of ADP-Glc PPase. The rational modification of this enzyme could improve the yield and resilience of economically important crops, which is particularly important in the current scenario of climate change and food shortage.


Assuntos
Evolução Molecular , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/fisiologia , Plantas/enzimologia , Regulação Alostérica , Glucose-1-Fosfato Adenililtransferase/genética , Modelos Moleculares , Conformação Proteica , Amido/biossíntese , Amido/química
15.
Trends Genet ; 38(3): 211-213, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34949465

RESUMO

Geminiviruses reprogram host machineries to ensure their own propagation. They do not encode any DNA polymerase. Furthermore, the absence of direct evidence about the precise role of any host-encoded DNA polymerase has made geminivirus replication an enigma. Wu et al. recently resolved this puzzle by revealing that geminiviruses utilize plant DNA polymerase α and δ to drive their replication.


Assuntos
Geminiviridae , Plantas , DNA Polimerase I/metabolismo , Replicação do DNA/genética , Geminiviridae/enzimologia , Geminiviridae/genética , Doenças das Plantas/virologia , Plantas/enzimologia , Plantas/virologia , Replicação Viral
16.
J Plant Physiol ; 268: 153572, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34839101

RESUMO

Reproductive development is critical for completion of plant life cycle and realization of crop yield potential. Reproductive organs comprise multiple distinctive or even transgenerational tissues, which are symplasmically disconnected from each other for protection and better control of nutrition and development. Cell wall invertases (CWINs) and sugar transporters are often specifically or abundantly expressed in these apoplasmic interfaces to provide carbon nutrients and sugar signals to developing pollens, endosperm and embryo. Emerging evidence shows that some of those genes were indeed targeted for selection during crop domestication. In this Opinion paper, I discuss the functional significance of the localized expression of CWINs and sugar transporters in reproductive organs followed by an analysis on how their spatial patterning may be regulated at the molecular levels and how the localized CWIN activity may be exploited for improvement of reproductive output.


Assuntos
Parede Celular , Proteínas de Plantas , Plantas/enzimologia , beta-Frutofuranosidase , Transporte Biológico , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares , beta-Frutofuranosidase/genética
17.
J Biotechnol ; 344: 1-10, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34915092

RESUMO

Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.


Assuntos
Plantas , Poliaminas , Biossíntese de Proteínas , Regulação da Expressão Gênica de Plantas , Fases de Leitura Aberta , Plantas/enzimologia , Plantas/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro
18.
Crit Rev Biotechnol ; 42(1): 106-124, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34167393

RESUMO

Phospholipases D (PLDs) are important membrane lipid-modifying enzymes in eukaryotes. Phosphatidic acid, the product of PLD activity, is a vital signaling molecule. PLD-mediated lipid signaling has been the subject of extensive research leading to discovery of its crystal structure. PLDs are involved in the pathophysiology of several human diseases, therefore, viewed as promising targets for drug design. The availability of a eukaryotic PLD crystal structure will encourage PLD targeted drug designing. PLDs have been implicated in plants response to biotic and abiotic stresses. However, the molecular mechanism of response is not clear. Recently, several novel findings have shown that PLD mediated modulation of structural and developmental processes, such as: stomata movement, root growth and microtubule organization are crucial for plants adaptation to environmental stresses. Involvement of PLDs in regulating membrane remodeling, auxin mediated alteration of root system architecture and nutrient uptake to combat nitrogen and phosphorus deficiencies and magnesium toxicity is established. PLDs via vesicle trafficking modulate cytoskeleton and exocytosis to regulate self-incompatibility (SI) signaling in flowering plants, thereby contributes to plants hybrid vigor and diversity. In addition, the important role of PLDs has been recognized in biotechnologically important functions, including oil/TAG synthesis and maintenance of seed quality. In this review, we describe the crystal structure of a plant PLD and discuss the molecular mechanism of catalysis and activity regulation. Further, the role of PLDs in regulating plant development under biotic and abiotic stresses, nitrogen and phosphorus deficiency, magnesium ion toxicity, SI signaling and pollen tube growth and in important biotechnological applications has been discussed.


Assuntos
Fosfolipase D , Plantas/enzimologia , Ácidos Fosfatídicos , Desenvolvimento Vegetal , Estresse Fisiológico
19.
FEBS J ; 289(18): 5426-5439, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34346181

RESUMO

Cysteine dioxygenases, 3-mercaptopropionate dioxygenases and mercaptosuccinate dioxygenases are all thiol dioxygenases (TDOs) that catalyse oxidation of thiol molecules to sulphinates. They are Fe(II)-dependent dioxygenases with a cupin fold that supports a 3xHis metal-coordinating triad at the active site. They also have other, broadly common features including arginine residues involved in substrate carboxylate binding and a conserved trio of residues at the active site featuring a tyrosine important in substrate binding catalysis. Recently, N-terminal cysteinyl dioxygenase enzymes (NCOs) have been identified in plants (plant cysteine oxidases, PCOs), while human 2-aminoethanethiol dioxygenase (ADO) has been shown to act as both an NCO and a small molecule TDO. Although the cupin fold and 3xHis Fe(II)-binding triad seen in the small molecule TDOs are conserved in NCOs, other active site features and aspects of the overall protein architecture are quite different. Furthermore, the PCOs and ADO appear to act as biological O2 sensors, as shown by kinetic analyses and hypoxic regulation of the stability of their biological targets (N-terminal cysteine oxidation triggers protein degradation via the N-degron pathway). Here, we discuss the emergence of these two subclasses of TDO including structural features that could dictate their ability to bind small molecule or polypeptide substrates. These structural features may also underpin the O2 -sensing capability of the NCOs. Understanding how these enzymes interact with their substrates, including O2 , could reveal strategies to manipulate their activity, relevant to hypoxic disease states and plant adaptive responses to flooding.


Assuntos
Dioxigenases , Oxigênio , Plantas , Arginina , Cisteamina , Cisteína/metabolismo , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Dioxigenases/metabolismo , Compostos Ferrosos , Oxigênio/metabolismo , Plantas/enzimologia , Compostos de Sulfidrila , Tirosina
20.
Biochemistry (Mosc) ; 86(10): 1243-1255, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34903154

RESUMO

The review presents current data on carbonic anhydrases found in various compartments of photosynthetic cells of higher plants. The available data on expression of genes some of carbonic anhydrases and its dependence on environmental factors and plant age are considered. The existing hypotheses on the functions of carbonic anhydrases of plasma membrane, cytoplasm, as well as of stroma and thylakoids of chloroplast, first of all, the hypothesis on participation of these enzymes in supplying carbon dioxide molecules to ribulose-bisphosphate carboxylase (Rubisco) are analyzed. Difficulties of establishing physiological role of the plant cell carbonic anhydrase are discussed in detail.


Assuntos
Anidrases Carbônicas/metabolismo , Cloroplastos/metabolismo , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Plantas/enzimologia , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...